a2zpapers.com

Exam. Code : 108505
 Subject Code : 8087

B.Com. $5^{\text {th }}$ Semester (Old Sylb. 2017) OPERATIONS RESEARCH
 Paper-BCG-505

Time Allowed-Three Hours] [Maximum Marks-50
SECTION-A
Note :-Attempt any TEN parts. Each part carries 1 mark.

1. (i) Define Unrestricted Variables.
(ii) Differentiate between PERT and CPM.
(iii) What is an Unbalanced Assignment Problem ?
(iv) Explain the North West corner method of solving a transportation problem.
(v) State the rules for constructing a Project Network.
(vi) Write the limitations of Game Theory.
(vii) Define and illustrate Merge and Burst events.
(viii) Define Degeneracy in Transportation Problem.
(ix) Define Operations Research.
(x) Define unbounded solution in L.P.P.
(xi) Write assumptions of queueing theory.
(xii) Distinguish pure and mixed strategies.

SECTION-B

Note :-Attempt any TWO questions. Each question carries 10 marks.
2. Define Operations Research. Discuss its uses in day to day decision making process. .
3. Time taken in hours by four mechanics in performing four tasks are as follows :

Tasks	Machines			
	I	II	III	IV
W	9	27	20	12
X	14	29	8	27
Y	39	20	19	16
Z	20	28	26	10

How should the tasks be allocated, one to a person, amongst the four mechanics, so as to minimize the total man hours ?

389(2119)/HH-7199
(Contd.)
4. Define L.P.P. Write its applications. Solve the following LPP using Graphical Method :
(a) Minimize $Z=60 x_{1}+80 x_{2}$

Subject to

$$
\begin{aligned}
& 20 x_{1}+30 x_{2} \geq 900 \\
& 40 x_{1}+30 x_{2} \geq 1200 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(b) Differentiate Transportation problems and Assignment problems.
5. The firm wants to send the output from various plant to warehouses involving minimum transportation cost. A company plan to assign 5 salesmen to five districts in which it operates. Estimates of sales revenue in thousands of Rupees for each salesman in a different district are given in the following table. In your opinion

a2zpapers.com

what should be the placement of salesmen if the objective is to maximize the expected sales revenue ?

Salesman	District				
	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$
S_{1}	40	46	48	36	48
$\mathrm{~S}_{2}$	48	32	36	29	44
$\mathrm{~S}_{3}$	49	35	41	38	45
$\mathrm{~S}_{4}$	30	46	49	44	44
$\mathrm{~S}_{5}$	37	41	48	43	47

SECTION-C

Note :-Attempt any TWO questions. Each question carries 10 marks.
6. At a certain petrol pump, customers arrive in a Poisson process with an average time of 5 minutes between arrivals. The time-intervals between services at the petrol pump follow exponential distribution and as such the mean time taken to service a unit is 2 minutes. On the basis of this information you are required to answer the following questions :
(a) What would be the expected average queue length?

a2zpapers.com

(b) What would be the average number of customers in the queuing system?
(c) How long on an average a customer does wait in the queue?
(d) How much time on an average a customer does spend in the system ?
(e) By how much should the flow of customers be increased to justify the opening of a second service point if the management is willing to open the same provided the customer has to wait for 5 minutes for the service ?
7. Solve the rectangular game whose pay-off matrix for player A is :

	B1	B2	B3
A1	8	-4	-2
A2	9	17	16
A3	10	20	-5

8. (a) "A game refers to a situation of Business Conflict." Comment on the situation.
(b) Differentiate PERT and CPM. How costs are calculated in this ?
9. A project has the following characteristics :

Activity	Preceding Activity	Expected Completion Time (in Weeks)
A	None	5
B	A	2
C	A	6
D	B	12
E	D	10
F	D	9
G	D	5
H	B	9
I	C, E	1
J	G	2
K	F, I, J	3
L	K	7
M	H, G	8
N	M	9

a2zpapers.com

(a) Draw a PERT network for this project.
(b) Find the critical path and the project completion time.
(c) Prepare an activity schedule showing the ES, EF, LS, LF and slack for each activity.

